
Nunit V2.0 - 3 October, 2002
Nunit V2.0 - 3 October, 2002

The day has finally come and NUnit V2.0 is released. The version that you will see in the about box is 
2.0.6. Thanks to all that have helped with working through problems. In the next few weeks we will be 
formulating the next release trying to incorporate as many requests as possible. 

This is the second major release of the xUnit based unit testing tool for Microsoft .NET. It is written 
entirely in C# and has been completely redesigned to take advantage of many .NET language features, 
for example custom attributes and other reflection related capabilities. 

Installation

By default the installation program places the all files in the directory:

c:\Program Files\Nunit V2.0

In the installation directory there are four sub-directories; bin, doc, samples, and src. 

Start Menu

The installation program places a number of items in the Start menu. There is a shortcut to the 
Forms interface executable. (There is also a shortcut placed directly on the desktop). In addition 
to the executable file the menu items under Samples bring up a Visual Studio.NET solution file 
for the particular sample. The source shortcut brings up the Visual Studio.NET solution file for 
the entire project. 

Installation Verification

The way that we verify that the installation has worked successfully is to install the program and 
run the tests that were used to build the program. The following is a screen shot of a successful 
run of our tests. There should be 206 tests and they should all run. 
Copyright © 2002 Nunit V2.0 1



Nunit V2.0 - 3 October, 2002
2 Nunit V2.0 Copyright © 2002



Nunit V2.0 - 3 October, 2002
Changes in V2.0

• Attribute based mechanism for identifying test fixtures and test methods. In previous versions of 
NUnit and JUnit for that matter, inheritance was used as the mechanism for identifying which 
classes were test fixtures and a naming convention was used to identify test methods in these 
classes. The Custom Attributes available in .NET provide a much more straightforward and less 
ambiguous mechanism for identification. See the attributes section below for details.

• Automatic creation of test suites. In previous versions of NUnit it was required to manually 
construct suites of tests using a Suite property. This has been replaced with dynamic creation of 
suites based on namespaces. Given an assembly the program will search through the assembly 
looking for test fixtures. Once it finds one it creates a suite based for each namespace and the 
specific test fixture. For example, NUnit.Tests.SuccessTests will build a containing Suite 
called “NUnit” which will contain another suite called “Tests” which in turn will create another 
suite called “SuccessTests” which finally will hold the individual test methods. This corrects an 
error prone task where things may or may not have been included in a suite. 

• Additional samples, Managed C++ and Visual J#. The existing samples (C#, VB.NET, Money) 
have been upgraded to the new version. Money-port has been included to demonstrate the 
minimal amount of effort required to upgrade. 

• A class TestCase in nunit.framework.dll has been provided for backwards compatibility. 
See the “Money-port” project as a sample of what is required to upgrade to the new version. The 
only change is to update the reference to the new framework dll and provide a default constructor. 

• The exception that is thrown when an Assertion fails is now called AssertionException. In 
previous versions this was called AssertionFailedError. 

Forms Interface

• Tree based display in forms interface with test status indication and the ability to run 
individual tests or suites from the tree. 

• Dynamic reloading of an assembly using AppDomains and shadow copying. This also 
applies if you add or change tests. The assembly will be reloaded and the display will be 
updated automatically. As of RC3 we no longer use the download cache, we use a 
configurable directory specified in the executable’s (nunit-gui and nunit-console) config 
files. 

• A reload command menu option to load and assemblies that may have been modified. 

• Window sizes are flexible due to the introduction of splitters on major sub-areas of the 
screen.

• File->Recent Assemblies menu item. The program keeps track of the 5 most recently 
used assemblies. If no command line arguments are used to start the forms executable 
the most recent assembly is loaded by default.

• The “Run” button is the default button on the form, which allows hitting return to start 
the tests. 
Copyright © 2002 Nunit V2.0 3



Nunit V2.0 - 3 October, 2002
• Patches suggested by Al Gonzalez

• The AboutBox was modified so its start position is set to CenterParent

• The AboutBox border was changed to Fixed3D

• The size and position of the main form is saved in the registry and restored when the 
program is launched

• Patch suggested by Rob Jeffries

• When the main form has the focus hitting the space bar will cause the program to 
exit. This is present in the current version of the VBunit.

Console Interface

• The console interface command line parameters have been modified to be more explicit and 
conform to similar programs available in .NET. See the Command line parameters section 
in this document for details. 

• XML Output. The console program produces XML output suitable for inclusion into other 
existing systems. 

• Customizing of console output is provided through the use of XSLT. See Summary.xslt for 
the translation that is provided for the release. Using your own transform file is possible via 
a command line argument. 

• Backwards compatibility with running suites. The Forms interface currently has no 
mechanism to run suites defined with the suite property. Using the fixture command line 
argument you must specify a class that is either a TestFixture or contains a Suite attribute. 

Attributes

TestFixture

This is the attribute that marks a class that contains test methods. This attribute is contained in 
the NUnit.Framework namespace. In previous versions of NUnit the programmer was 
required to inherit from a class called TestCase. This is more flexible because it allows a 
TestFixture attribute to be put on any class.

Note: There are a few restrictions. The class must have a default constructor. The class must 
also be a publicly exported type or the program that dynamically builds suites will not 
see it. 

TestFixture Example

namespace NUnit.Tests
{

using System;
using NUnit.Framework;
4 Nunit V2.0 Copyright © 2002



Nunit V2.0 - 3 October, 2002
[TestFixture]
public class SuccessTest
{

// ...
}

}

Test

The Test attribute marks a specific method inside a class that has already been marked as a 
TestFixture, as a test method. For backwards compatibility with previous versions of Nunit a test 
method will also be found if the first 4 letters are “test” regardless of case. 

Note: The signature for a test method is defined as follows; public void MethodName()
There must be no parameters. If the programmer marks a test method that does not 
have the correct signature it will not be run and it will appear in the Test Not Run area 
in the UI that ran the program. 

Test Example

namespace NUnit.Tests
{

using System;
using NUnit.Framework;

[TestFixture]
public class SuccessTest
{

[Test] 
public void Success()
{}

public void TestSuccess()
{

// will also be run -- backwards compatibility
}

}

SetUp and TearDown

These two attributes are used inside a TestFixture to provide a common set of functions that are 
performed prior (SetUp) and after (TearDown) a test method is called. A TestFixture can have 
only one SetUp method and only one TearDown method. If more than one of each type is 
defined the TestFixture will not be run. It will compile however. 

SetUp/TearDown Example

This example is from SetupTest.cs in nunit.tests.dll. It verifies that the SetUp method (Init) 
is called and the TearDown method (Destroy) is called during the execution of the test 
fixture. 
Copyright © 2002 Nunit V2.0 5



Nunit V2.0 - 3 October, 2002
[TestFixture]
public class SetUpTest
{

internal class SetUpAndTearDownFixture
{

internal bool wasSetUpCalled;
internal bool wasTearDownCalled;

[SetUp]
public void Init()
{

wasSetUpCalled = true;
}

[TearDown]
public void Destroy()
{

wasTearDownCalled = true;
}

[Test]
public void Success(){}

}

[Test]
public void MakeSureSetUpAndTearDownAreCalled()
{

SetUpAndTearDownFixture testFixture = new
SetUpAndTearDownFixture();

TestSuite suite = new TestSuite("SetUpAndTearDownSuite");
suite.Add(testFixture);
suite.Run(NullListener.NULL);
Assertion.Assert(testFixture.wasSetUpCalled);
Assertion.Assert(testFixture.wasTearDownCalled);

}

}

SetUp/TearDown and Inheritance

These two attributes are inherited from base classes. Therefore, if a base class has defined a 
SetUp method that method will be called prior to execution of test methods in the derived class. 
If you wish to add more SetUp/TearDown functionality in a derived class you need to mark the 
method with the appropriate attribute and then call the base classes method. 

SetUp/TearDown Inheritance Example

The following code is part of the SetupTest.cs file that was used in the previous example. 
It simply demonstrates that SetUp/TearDown are called when inherited.

internal class InheritSetUpAndTearDown : SetUpAndTearDownFixture
{

6 Nunit V2.0 Copyright © 2002



Nunit V2.0 - 3 October, 2002
[Test]
public void AnotherTest(){}

}

[Test]
public void CheckInheritedSetUpAndTearDownAreCalled()
{

InheritSetUpAndTearDown testFixture = new
InheritSetUpAndTearDown();

TestSuite suite = new TestSuite("SetUpAndTearDownSuite");
suite.Add(testFixture);
suite.Run(NullListener.NULL);

Assertion.Assert(testFixture.wasSetUpCalled);
Assertion.Assert(testFixture.wasTearDownCalled);

}

ExpectedException

This is the way to specify that the execution of a test will throw an exception. This attribute takes 
a parameter which is a Type. The runner will execute the test and if it throws the specific 
exception, then the test passes. If it throws a different exception the test will fail. This is true 
even if the thrown exception inherits from the expected exception. 

ExpectedException Example

namespace NUnit.Tests
{

using System;
using NUnit.Framework;
using NUnit.Core;

[TestFixture]
public class ExpectExceptionTest 
{

[Test]
[ExpectedException(typeof(Exception))]
public void TestSingle()
{

throw new Exception("single exception");

}
}

}

Copyright © 2002 Nunit V2.0 7



Nunit V2.0 - 3 October, 2002
Suite

The Suite Attribute is used to define subsets of suites based on user preference. The belief by 
the developers of this version is that the need for this will diminish because of the dynamic 
creation mechanism provided by the framework. However it is provided for backwards 
compatibility. 

Note: There is no way to run user-defined suites in the forms interface. 

Suite Attribute syntax

The following is NUnit.Tests.AllTests from the nunit.tests.dll. 

namespace NUnit.Tests
{

using System;
using NUnit.Framework;
using NUnit.Core;

public class AllTests
{

[Suite]
public static TestSuite Suite
{

get
{

TestSuite suite = new TestSuite("All Tests"); 
suite.Add(new OneTestCase());
suite.Add(new Assemblies.AssemblyTests()); 
suite.Add(new AssertionTest());
return suite;

}
}

}
}

8 Nunit V2.0 Copyright © 2002



Nunit V2.0 - 3 October, 2002
Ignore

The ignore attribute is an attribute to not run a test or test fixture for a period of time. The person 
marks either a Test or a TestFixture with the Ignore Attribute. The running program sees the 
attribute and does not run the test or tests. The progress bar will turn yellow if a test is not run 
and the test will be mentioned in the reports that it was not run. 

This feature should be used to temporally not run a test or fixture. This is a better mechanism 
than commenting out the test or renaming methods since the tests will be compiled with the rest 
of the code and there is an indication at run time that a test is not being run. This insures that 
tests will not be forgotten. 

Test Fixture Syntax

[TestFixture]
[Ignore(“Reason”)]
public class MyTests 
{

// all tests will not be run
}

Test Syntax

[TestFixture]
public class MyTests 
{

[Test] public void MyTest() 
{

// test will be run
}

[Test]
[Ignore(“Reason”)]
public void MyIgnoredTests()
{

// test will not be run
}

}

Upgrading from V1.11 to V2.0

Upgrading from V1.11 to V2.0 requires a minimal amount of work. Since the framework still looks 
for test methods by name in addition to the attributes no test method will need to be modified to 
upgrade to the new version. The only source code change required is to remove the constructor with 
the string parameter in the class that inherits from TestCase. The only requirement is that you have 
a default constructor. If there was significant processing in the existing constructor than just move 
it to the default constructor. The only other change is to change the reference to nunit.framework.dll 
instead of the V1.x framework dll. This method has been marked using the Obsolete attribute so you 
will get warnings but they can be ignored for now!
Copyright © 2002 Nunit V2.0 9



Nunit V2.0 - 3 October, 2002
Suite property

The existing Suite property will not be found by the new program. These must be changed to the 
“Suite” attribute for the test runners to find them. Another alternative is that these suites are no 
longer needed due to the automatic capability that is built in to the new version. 

AssertionFailedError

If you have written code expecting the exception, AssertionFailedError this must be changed 
to AssertionException.

Command Line Parameters

Forms Interface

The forms interface has two command line options. If the program is started without any 
command line parameters it automatically loads the most recently loaded assembly. It does not 
automatically run it just loads the assembly. The forms interface also keeps track of the 5 most 
recently loaded assemblies. To access these see the File->Recent Assemblies menu item. 

The other option is to specify the assembly on the command line. The following will start the 
forms interface with the assembly nunit.tests.dll

nunit-gui.exe /assembly:nunit.tests.dll

Console Interface

The console interface has a few additional options compared to the forms interface. The console 
program must always specify a command line parameter. The console interface always creates 
an XML representation of the test results. This file by default is called TestResult.xml and is 
placed in the working directory. 

Note: By default the nunit-console program is not added to your path. You must do this 
manually if this is the desired behavior. 

Specifying an Assembly

The console program must always have an assembly specified. To run the tests contained 
in the nunit.tests.dll use the following command. 

nunit-console /assembly:nunit.tests.dll

Specifying an Assembly and a Fixture

When specifying a a fixture you must give the full name of the test fixture along with the 
containing assembly. For example, to run the NUnit.Tests.AssertionTests in the 
nunit.tests.dll assembly use the following command.

nunit-console /fixture:NUnit.Tests.AssertionTests 
/assembly:nunit.tests.dll
10 Nunit V2.0 Copyright © 2002



Nunit V2.0 - 3 October, 2002
Specifying the XML file name

As stated above the console program always creates an XML representation of the test 
results. To change the name to console-test.xml use the following command line option,

nunit-console /assembly:nunit.tests.dll /xml:console-test.xml

Specifying the Transform file

The console interface uses XSLT to transform the test results from the XML file to what is 
printed to the screen when the program executes. The console interface has a default 
transformation that is part of the executable. To specify your own transformation named 
myTransform.xslt use the following command line option.

nunit-console /assembly:nunit.tests.dll 
/transform:myTransform.xslt

Note: For additional information see the XML schema for the test results. This file is in 
the same directory as the executable and is called Results.xsd. The default 
transform Summary.xslt is located in the nunit-console source directory. 
Copyright © 2002 Nunit V2.0 11



Nunit V2.0 - 3 October, 2002
Samples

• C# - This sample demonstrates 4 failing unit tests and 1 ignored test written in C#. 

• VB.NET - This sample demonstrates what should be four failing unit tests and 1 ignored test. 

• Managed C++ - This is the same example as the others with 4 failing unit tests. This is correct 
when compiled in Debug mode. In Release mode the divide by zero test succeeds. 

• Visual J# - This has the same tests as the other samples, except written in Visual J#. If you have 
not installed this when you go to open the Visual Studio solution file it will inform you that the 
file solution file cannot be loaded. 

• Money - This is C# version of the money example which is found in most xUnit 
implementations. Thanks Kent. 

• Money-port - This is an example of the minimum amount of work that is needed to upgrade from 
previous versions of NUnit to this version. 

To-do List

• NAnt Integration is still proceeding. We expect to create a separate release which has all the 
NAnt capability due to requirements related to using the latest version of NAnt which is not 
currently released. 

• Save the position of the splitters in the registry and restore them upon launch (Suggested by Al 
Gonzalez)

• Expand All/Collapse All buttons in the UI and menu items. (Suggested by Al Gonzalez)

• Running user defined suites in the forms interface. They currently can only be run from the 
console. 

• Expand nunit.org website for tips, tools and discussion. 

• Visual Studio Integration

• Open a Visual Studio.net solution file and build a suite of all TestFixtures in the solution file. 

• Templates for TestFixture file types and Test assemblies.

• Navigation between output of the forms window to the specific file in Visual Studio.

Code contribution philosophy

First and foremost we have done our best to insure that this program was developed test-first. As 
such we will accept no code changes without associated tests. As for bug fixes we plan to follow the 
procedure that we write a failing unit test first and then fix it. In this fashion the number of tests that 
we have will grow over time. Lastly, if a change breaks an existing test it is the responsibility of the 
person making the change to first understand the ramification of the change and either fix the test 
or alter the modification that caused the problem. That said, if you are interested, so are we, please 
help make Nunit the best xUnit tool in any language. 
12 Nunit V2.0 Copyright © 2002



Nunit V2.0 - 3 October, 2002
License

Copyright © 2002 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov
Copyright © 2000-2002 Philip A. Craig

This software is provided 'as-is', without any express or implied warranty. In no event will the 
authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial 
applications, and to alter it and redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the 
original software. If you use this software in a product, an acknowledgment (see the following) in 
the product documentation is required.

Portions Copyright © 2002 James W. Newkirk, Michael C. Two, Alexei A. Vorontsov or Copyright 
© 2000-2002 Philip A. Craig

2. Altered source versions must be plainly marked as such, and must not be misrepresented as being 
the original software.

3. This notice may not be removed or altered from any source distribution.

Developers

• James Newkirk (jim@nunit.org)

• Michael C. Two (mike2@nunit.org)

• Alexei A. Vorontsov (alexei@nunit.org)

• Philip A. Craig (philip@nunit.org)

• Charlie Poole (cpoole@pooleconsulting.com)

Thanks and Acknowledgements

• Doug de la Torre

• David White

• Ethan Smith

• Al Gonzalez

• Rob Jeffries

• Ron Jeffries

• Ben Lowery

• Kent Beck and Erich Gamma for starting the whole thing. 
Copyright © 2002 Nunit V2.0 13



Nunit V2.0 - 3 October, 2002
V2.0 (Beta 1, RC1, RC2, and RC3) Detailed Corrections

2.0 RC2 --> RC3 Changes

This barring any unforeseen new critical bugs will be the last V2.0 release candidate. We will not 
be adding any additional features until V2.0 is released which we expect now to be sometime around 
26 September, 2002. The features that have been requested are being prioritized and will be 
implemented in future releases. We plan to continue developing so there will be new releases 
coming in the next few months. 

Features

• 606258, 607950, 608233 - These features were implemented to work around problems with 
the download cache. By default when shadow copying is turned on the CLR downloads the 
assemblies into a cache. It turns out that when you have signed assembly with a fixed version 
number the CLR will not update the assembly even if it has changed. In order to fix this we 
now download all assemblies into a user specified directory. (see nunit-gui.exe.config and 
nunit-console.exe.config, shadowfiles.path). This directory is cleared every time a new 
assembly is loaded. There is also a way to force the reload of an assembly. This new menu 
item is called Reload, with keyboard shortcut Ctrl-R. 

Bugs

• 607939 - Gui is not refreshed.

• 604785 - changes to assembly not noticed

• 604815 - nonamespace assembly belongs in test

2.0 RC1 --> RC2 Changes

Features

• 597419 - Support Drag & Drop in Gui

• 596955, 550327 Configuration files. RC2 now supports custom configuration files per 
assembly. For example, nunit.tests.dll has a configuration file named 
nunit.tests.dll.config. The name of the config file must be <assembly name>.config. 
When NUnit loads an assembly it looks in the same directory as the assembly for the 
specific config file and appends that information to the AppDomain that was created to 
run the tests. 

• The samples were modified to show usage of the ExpectException attribute and the 
Ignore attribute. 

Bugs, Fixed or closed

• 596170 - Installation missing files
14 Nunit V2.0 Copyright © 2002



Nunit V2.0 - 3 October, 2002
• 596377 - NUnit framework missing strong name

• 596151 - NUnit RC1 path reference bug

• 597355 - Old NUnit web site is obsolete

• 596731 - Disable run button if no assembly is loaded

• 597440 - Spurious output to standard out in GUI

• 597692 - It does not work with COM+

• 594485 - Recent list problems

• 597408 - Crash when trying to run with no fixture

• 598305 - Performance problem in GUI

• 598833 - Running an empty makes GUI crash

• 597628 - NUnit tests leave files around

• 598308 - Stack overflow causes exception

• 600566 - Error message when no namespace

• 600627 - Pressing space in NUnit Gui cause exit (this is what it is supposed to do)

• 601106 - NUnit Gui does not display it’s main form

• 599950 - Invalid Error for non .net assembly

• 600567 - “Key cannot be null” without namespaces

• 600118 - Test time not updated

• 602049 - Assembly fails to load, gets wrong name

• 596248 - Invalid cast when exception is thrown

• 596502 - Console expected exception & custom exception

• 602073 - Tests missing after add to empty fixture

• 599954 - Too much info lost on test change

• 598661 - Memory leak in GUI

• 604148 - Invalid Cast Exception thrown

• 604161 - Remoting exceptions in GUI

• 597412 - Invalid XML for certain cultures

• 598669 - Config info not sent through app in RC1

• 605340 - Varying test results

• 604211 - NUnit 2.0.2 does not install
Copyright © 2002 Nunit V2.0 15



Nunit V2.0 - 3 October, 2002
• 597607 - Testing serialization fails

• 605321 - Release build from CVS crash on start

• 602062 - Install vbproj fails to load
16 Nunit V2.0 Copyright © 2002



Nunit V2.0 - 3 October, 2002
2.0 Beta2 --> RC1 Changes

• Fixed problem with installation of VB samples

• Fixed bug with DivideByZero member function in VB samples. The function now throws divide 
by zero exception and the test fails as expected. 

• Assembly Load Failure - When the forms interface is left up and the programmer is modifying 
the currently loaded assembly at times the programmers get a message like object <number.rem> 
has been disconnected or does not exist at the server. The problem is intermittent and does not 
occur on some machines at all. Fix suggested by Ethan Smith

• Specific error message indicating the reason when a method signature associated with an 
attribute (i.e. Test, SetUp, TearDown, Suite) is invalid. For example, if I have a test method that 
does not return void then the message should be: Method xxx has an invalid return parameter

• The file watcher that we use to determine if a currently loaded assembly has changed is too 
sensitive. It reports file changes before the overall set of changes has been completed. This has 
been corrected. 

• Fixed Bug 538516 - Expect Exception fails when expecting user defined exceptions. 

• Fixed Bug 548241 - Nunit problem with delegates. 

• Fixed Bug 576096 - Serialization problem. 

• Fixed: Bug 590912 - GUI Standardization, contributed by Charlie Poole. 

• Fixed: Bug 590837 - Test tree collapses on select, contributed by Charlie Poole.

• Fixed: Bug 590838 - Test Results are cleared when selecting a node, contributed by Charlie 
Poole.

• Fixed: Bug 590839 - Double-click to run a test, contributed by Charlie Poole.

• Fixed: Bug 590842 - Test tree collapses on recompile of test, contributed by Charlie Poole.

• Fixed: Bug 593660 - Context menu runs wrong test, contributed by Charlie Poole.

• Fixed Bug 592375 - Duplicate test suite added

• Fixed Bug 593423 - Partial namespace clash

• Fixed Bug 588101 - install does not work right. 

2.0 Beta 2 Changes

• All Nunit assemblies are now V2.0.2. 

• Namespace was changed from Nunit.* back to NUnit.*. Many apologies for you early 
adopters! However, for improved backward compatibility which was the number one complaint 
about Nunit 2.0,we went back to the namespace that existed in Nunit V1.*. 

• Improved backward compatibility. The TestFixture class that was present in Beta1 has been 
removed and replaced with a class named TestCase. Therefore, the only code change that is 
Copyright © 2002 Nunit V2.0 17



Nunit V2.0 - 3 October, 2002
required for existing code is to remove the constructor that has a string parameter. You will also 
have to update the reference to the nunit.framework.dll. If you have significant code that 
is in the existing constructor you will need to move it to the default constrictor. 

• Improved reporting of problems with a class that is marked with the TestFixture attribute. 
This will still show up as not runnable but will now inform you of the specific problem. 

• Bug (575936) - Int32, Int64 Comparison. This was logged as a bug in NUnit V1.x. There is a test 
in AssertionTest which verifies that it works in Nunit 2.0. 

• Bug (561909) - AssertionException now inherits from System.Exception instead of 
ApplicationException. This bug/enhancement has been implemented in V2.0. 

• Launched nunit.org and enabled the link in the About Box. Currently the website is just a 
replication of the ReadMe but look forward to new features over the next few weeks. 

• Improvements in ReadMe. 
18 Nunit V2.0 Copyright © 2002



Nunit V2.0 - 3 October, 2002
Copyright © 2002 Nunit V2.0 19



Nunit V2.0 - 3 October, 2002
20 Nunit V2.0 Copyright © 2002


	Nunit V2.0 - 3 October, 2002
	Installation
	Start Menu
	Installation Verification

	Changes in V2.0
	. Attribute based mechanism for identifying test fixtures and test methods. In previous versions of NUnit and JUnit for that matter, inheritance was used as the mechanism for identifying which classes were test fixtures and a naming conventio...
	. Automatic creation of test suites. In previous versions of NUnit it was required to manually construct suites of tests using a Suite property. This has been replaced with dynamic creation of suites based on namespaces. Given an assembly the...
	. Additional samples, Managed C++ and Visual J#. The existing samples (C#, VB.NET, Money) have been upgraded to the new version. Money-port has been included to demonstrate the minimal amount of effort required to upgrade.
	. A class TestCase in nunit.framework.dll has been provided for backwards compatibility. See the “Money-port” project as a sample of what is required to upgrade to the new version. The only change is to update the reference to the new framewo...
	. The exception that is thrown when an Assertion fails is now called AssertionException. In previous versions this was called AssertionFailedError.
	Forms Interface
	. The AboutBox was modified so its start position is set to CenterParent
	. The AboutBox border was changed to Fixed3D
	. The size and position of the main form is saved in the registry and restored when the program is launched
	. When the main form has the focus hitting the space bar will cause the program to exit. This is present in the current version of the VBunit.

	Console Interface
	. The console interface command line parameters have been modified to be more explicit and conform to similar programs available in .NET. See the Command line parameters section in this document for details.
	. XML Output. The console program produces XML output suitable for inclusion into other existing systems.
	. Customizing of console output is provided through the use of XSLT. See Summary.xslt for the translation that is provided for the release. Using your own transform file is possible via a command line argument.
	. Backwards compatibility with running suites. The Forms interface currently has no mechanism to run suites defined with the suite property. Using the fixture command line argument you must specify a class that is either a TestFixture or cont...


	Attributes
	TestFixture
	TestFixture Example

	Test
	Test Example

	SetUp and TearDown
	SetUp/TearDown Example
	SetUp/TearDown and Inheritance
	SetUp/TearDown Inheritance Example

	ExpectedException
	ExpectedException Example

	Suite
	Suite Attribute syntax

	Ignore
	Test Fixture Syntax
	Test Syntax


	Upgrading from V1.11 to V2.0
	Suite property
	AssertionFailedError

	Command Line Parameters
	Forms Interface
	Console Interface
	Specifying an Assembly
	Specifying an Assembly and a Fixture
	Specifying the XML file name
	Specifying the Transform file


	Samples
	. C# - This sample demonstrates 4 failing unit tests and 1 ignored test written in C#.
	. VB.NET - This sample demonstrates what should be four failing unit tests and 1 ignored test.
	. Managed C++ - This is the same example as the others with 4 failing unit tests. This is correct when compiled in Debug mode. In Release mode the divide by zero test succeeds.
	. Visual J# - This has the same tests as the other samples, except written in Visual J#. If you have not installed this when you go to open the Visual Studio solution file it will inform you that the file solution file cannot be loaded.
	. Money - This is C# version of the money example which is found in most xUnit implementations. Thanks Kent.
	. Money-port - This is an example of the minimum amount of work that is needed to upgrade from previous versions of NUnit to this version.

	To-do List
	. NAnt Integration is still proceeding. We expect to create a separate release which has all the NAnt capability due to requirements related to using the latest version of NAnt which is not currently released.
	. Save the position of the splitters in the registry and restore them upon launch (Suggested by Al Gonzalez)
	. Expand All/Collapse All buttons in the UI and menu items. (Suggested by Al Gonzalez)
	. Running user defined suites in the forms interface. They currently can only be run from the console.
	. Expand nunit.org website for tips, tools and discussion.
	. Visual Studio Integration
	. Open a Visual Studio.net solution file and build a suite of all TestFixtures in the solution file.
	. Templates for TestFixture file types and Test assemblies.
	. Navigation between output of the forms window to the specific file in Visual Studio.


	Code contribution philosophy
	License
	Developers
	. James Newkirk (jim@nunit.org)
	. Michael C. Two (mike2@nunit.org)
	. Alexei A. Vorontsov (alexei@nunit.org)
	. Philip A. Craig (philip@nunit.org)
	. Charlie Poole (cpoole@pooleconsulting.com)

	Thanks and Acknowledgements
	. Doug de la Torre
	. David White
	. Ethan Smith
	. Al Gonzalez
	. Rob Jeffries
	. Ron Jeffries
	. Ben Lowery
	. Kent Beck and Erich Gamma for starting the whole thing.

	V2.0 (Beta 1, RC1, RC2, and RC3) Detailed Corrections
	2.0 RC2 --> RC3 Changes
	Features
	. 606258, 607950, 608233 - These features were implemented to work around problems with the download cache. By default when shadow copying is turned on the CLR downloads the assemblies into a cache. It turns out that when you have signed asse...

	Bugs
	. 607939 - Gui is not refreshed.
	. 604785 - changes to assembly not noticed
	. 604815 - nonamespace assembly belongs in test


	2.0 RC1 --> RC2 Changes
	Features
	Bugs, Fixed or closed

	2.0 Beta2 --> RC1 Changes
	. Fixed problem with installation of VB samples
	. Fixed bug with DivideByZero member function in VB samples. The function now throws divide by zero exception and the test fails as expected.
	. Assembly Load Failure - When the forms interface is left up and the programmer is modifying the currently loaded assembly at times the programmers get a message like object <number.rem> has been disconnected or does not exist at the server....
	. Specific error message indicating the reason when a method signature associated with an attribute (i.e. Test, SetUp, TearDown, Suite) is invalid. For example, if I have a test method that does not return void then the message should be: Met...
	. The file watcher that we use to determine if a currently loaded assembly has changed is too sensitive. It reports file changes before the overall set of changes has been completed. This has been corrected.
	. Fixed Bug 538516 - Expect Exception fails when expecting user defined exceptions.
	. Fixed Bug 548241 - Nunit problem with delegates.
	. Fixed Bug 576096 - Serialization problem.
	. Fixed: Bug 590912 - GUI Standardization, contributed by Charlie Poole.
	. Fixed: Bug 590837 - Test tree collapses on select, contributed by Charlie Poole.
	. Fixed: Bug 590838 - Test Results are cleared when selecting a node, contributed by Charlie Poole.
	. Fixed: Bug 590839 - Double-click to run a test, contributed by Charlie Poole.
	. Fixed: Bug 590842 - Test tree collapses on recompile of test, contributed by Charlie Poole.
	. Fixed: Bug 593660 - Context menu runs wrong test, contributed by Charlie Poole.
	. Fixed Bug 592375 - Duplicate test suite added
	. Fixed Bug 593423 - Partial namespace clash
	. Fixed Bug 588101 - install does not work right.

	2.0 Beta 2 Changes
	. All Nunit assemblies are now V2.0.2.
	. Namespace was changed from Nunit.* back to NUnit.*. Many apologies for you early adopters! However, for improved backward compatibility which was the number one complaint about Nunit 2.0,we went back to the namespace that existed in Nunit V1.*.
	. Improved backward compatibility. The TestFixture class that was present in Beta1 has been removed and replaced with a class named TestCase. Therefore, the only code change that is required for existing code is to remove the constructor that...
	. Improved reporting of problems with a class that is marked with the TestFixture attribute. This will still show up as not runnable but will now inform you of the specific problem.
	. Bug (575936) - Int32, Int64 Comparison. This was logged as a bug in NUnit V1.x. There is a test in AssertionTest which verifies that it works in Nunit 2.0.
	. Bug (561909) - AssertionException now inherits from System.Exception instead of ApplicationException. This bug/enhancement has been implemented in V2.0.
	. Launched nunit.org and enabled the link in the About Box. Currently the website is just a replication of the ReadMe but look forward to new features over the next few weeks.
	. Improvements in ReadMe.



